Lake Rialto Introduction
Location of Lake Rialto

- Located south of the City’s Existing Wastewater Treatment Plant
- Provides ample supply of highly purified water
- Improves water quality
- Potential reduction of salt and nitrogen from the Santa Ana River ecosystem
- Can further reduce water temperatures for downstream sensitive fish species
Lake Rialto Concept - Section
Pumping to Current Discharge Structure

Proposed Pump Station Discharges To Existing WWTP Discharge Structure
Lake Rialto – Conceptual Grading & Piping
Grading achieves desired walking paths, view lookouts without human contact with the lake.
Lake Rialto – Conceptual Design

- Hydraulic & Habitat Benefits
 - Creation of Wetlands & Wildlife Habitat
 - Retention and Control of flows in the Rialto Channel
 - Removal of Invasive Fish Species
 - Improve water quality
- Community Benefits
 - Water Feature (non-contact)
 - Walking Trails
 - Education
Lake Rialto
Wetland/Upland Interface Cross Section
Using Hybrid of Clay/Soil and Plastic Liner

Steeper and Shallower Transition Zones

Clay liner with transition to wetland soil for plants

Approx. 2:1 Slope

Approx. 7:1 Slope

Plastic Liner
The water surface is completely controllable to mimic a natural wetland interface or for drawdown and storage for stream dewatering.
Provides Hydraulic and Habitat Benefits for the Santa Ana River Habitat Conservation Plan

Rialto Channel Invasive Fish Species Removal

STREAM DEWATERING

Total Lake Storage
38.65 MG
At 7 MGD = 5.5 D
At 11.7 MGD = 3.3 D
Provides Multiple Community Benefits
Recreational (Non-Contact) , Environmental & Educational
Lake Rialto – Summer Flow Diversions to IEUA
Potential Considerations for DDW

- Project Components & Considerations
 - 7 MGD for six months [May to October] 3,500 AFY
 - (1) Pump station + pipeline + interconnection
 - Supplemental well to meet HCP discharge requirements
 - Point of diversion to IEUA
 - Consolidation or separation of flows through Lake Rialto To IEUA?
Project Schedule

Table 2 – Lake Rialto Final Design Schedule

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Civil and Mechanical Plans</td>
<td></td>
</tr>
<tr>
<td>Offsite Surveying and Street Parking Plans</td>
<td></td>
</tr>
<tr>
<td>Landscaping and Irrigation Plans</td>
<td></td>
</tr>
<tr>
<td>Hydrology/Hydraulics Report</td>
<td></td>
</tr>
<tr>
<td>Storm Water Pollution Prevention Plan (SWPPP)</td>
<td></td>
</tr>
<tr>
<td>Technical Specifications</td>
<td></td>
</tr>
<tr>
<td>Construction Period Engineering Services</td>
<td></td>
</tr>
<tr>
<td>Project Management</td>
<td></td>
</tr>
<tr>
<td>City proceeds to bid construction contract</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>★</td>
</tr>
</tbody>
</table>

Notes:
- Anticipated Notice to Proceed is March 2022
- ★ = Presentation to the Water Subcommittee
Questions